24小时服务热线:18667826269 | 邮箱:zl@zjbeacon.com
产品中心
Products cener
离子色谱的分离机理主要是离子交换,有3种分离方式,它们是高效离子交换色谱(HPIC)、离子排斥色谱 (HPIEC)和离子对色谱 (MPIC)。用于3种分离方式的柱填料的树脂骨架基本都是苯乙烯-二乙烯基苯的共聚物,但树脂的离子交换功能基和容量各不相同。HPIC用低容量的离子交换树脂,HPIEC用高容量的树脂,MPIC用不含离子交换基团的多孔树脂。3种分离方式各基于不同分离机理。HPIC的分离机理主要是离子交换,HPIEC主要为离子排斥,而MPIC则是主要基于吸附和离子对的形成。
气相色谱部分原理与气象色谱一致,质谱部分原理为电子轰击离子化(electron impact ionization,EI)EI是最常用的一种离子源,有机分子被一束电子流(能量一般为70eV)轰击,失去一个外层电子,形成带正电荷的分子离子(M+),M+进一步碎裂成各种碎片离子、中性离子或游离基,在电场作用下,正离子被加速、聚焦、进入质量分析器分析。
液相色谱部分原理与气象色谱一致,质谱部分原理为电子轰击离子化(electron impact ionization,EI)EI是最常用的一种离子源,有机分子被一束电子流(能量一般为70eV)轰击,失去一个外层电子,形成带正电荷的分子离子(M+),M+进一步碎裂成各种碎片离子、中性离子或游离基,在电场作用下,正离子被加速、聚焦、进入质量分析器分析。
ICP-MS仪器所使用的等离子体除了方位和线圈接地方式外,与发射光谱中使用的基本相同。所使用的质量分析器、离子检测器和数据采集系统又与四极杆GC-MS仪器相类似。质量分析器多采用四极杆质谱计,也有采用具有高分辨的双聚焦扇形磁场质谱计、飞行时间质谱计等。该技术的特点:灵敏度高;速度快,可在几分钟内完成几十个元素的定量测定;谱线简单,干扰相对于光谱技术要少;线性范围可达7~9个数量级;样品的制备和引入相对于其他质谱技术简单;既可用于元素分析,还可进行同位素组成的快速测定;测定精密度(RSD)可到0.1%。
高频振荡器发生的高频电流,经过耦合系统连接在位于等离子体发生管上端,铜制内部用水冷却的管状线圈上。石英制成的等离子体发生管内有三个同轴氩气流经通道。冷却气(Ar)通过外部及中间的通道,环绕等离子体起稳定等离子体炬及冷却石英管壁,防止管壁受热熔化的作用。工作气体(Ar)则由中部的石英管道引入,开始工作时启动高压放电装置让工作气体发生电离,被电离的气体经过环绕石英管顶部的高频感应圈时,线圈产生的巨大热能和交变磁场,使电离气体的电子、离子和处于基态的氖原子发生反复猛烈的碰撞,各种粒子的高速运动,导致气体完全电离形成一个类似线圈状的等离子体炬区面,此处温度高达6000一10000摄氏度。样品经处理制成溶液后,由超雾化装置变成全溶胶由底部导入管内,经轴心的石英管从喷咀喷入等离子体炬内。样品气溶胶进入等离子体焰时,绝大部分立即分解成激发态的原子、离子状态。当这些激发态的粒子回收到稳定的基态时要放出一定的能量(表现为一定波长的光谱),测定每种元素特有的谱线和强度,和标准溶液相比,就可以知道样品中所含元素的种类和含量。
原子吸收是指呈气态的原子对由同类原子辐射出的特征谱线所具有的吸收现象。
介于原子发射(AES)和原子吸收(AAS)之间的光谱分析技术,其原理类似于原子发射光谱技术。通过测量待测元素的原子蒸气在特定频率辐射能激发下所产生的荧光发射强度,以此来测定待测元素含量的方法。
红外光谱仪是利用物质对不同波长的红外辐射的吸收特性,进行分子结构和化学组成分析的仪器。红外光谱仪通常由光源,单色器,探测器和计算机处理信息系统组成。根据分光装置的不同,分为色散型和干涉型。对色散型双光路光学零位平衡红外分光光度计而言,当样品吸收了一定频率的红外辐射后,分子的振动能级发生跃迁,透过的光束中相应频率的光被减弱,造成参比光路与样品光路相应辐射的强度差,从而得到所测样品的红外光谱。
紫外可见分光光度计,工作原理如下:由于分子中的某些基团吸收了紫外可见辐射光后,发生了电子能级跃迁而产生的吸收光谱。由于各种物质具有各自不同的分子、原子和不同的分子空间结构,其吸收光能量的情况也就不会相同,因此,每种物质就有其特有的、固定的吸收光谱曲线,根据这一特性,可对物质进行定性分析。由于物质浓度的不同,吸收光谱上的某些特征波长处的吸光度也不相同,从而通过对物质吸光度或透过率的测量判定该物质的含量,这就是分光光度定性和定量分析的基础,也是分析仪器紫外可见分光光度计的工作原理。
直读光谱仪的全称是火花光电直读光谱仪,它的原理是,待测物品经过电火花或者说电弧的激发,从固态直接汽化,称为原子蒸汽,经过电弧火花原子的内部发生了一系列反应,各元素发射出特征波长,这些波长经过分光,再经过感光元件,被检测到,进行模数转换,从光信号变成电信号,最后经过计算机的一系列计算,得到元素的百分比含量,这个过程是直读光谱仪的原理,把最后的结果打印出来。
主要是利用晶体的晶格间距当作光栅对x射线造成产生衍射,从衍射图谱可以推断出晶体中各个晶格之间的间距,从而进一步推断出晶体结构,晶胞尺寸,结合其他信息可以推断材料的成分。用于物相分析的检测设备,观察的是组织结构,可以测各个相的比例、晶体结构等。X射线衍射仪技术(X-ray diffraction,XRD)。通过对材料进行X射线衍射,分析其衍射图谱,获得材料的成分、材料内部原子或分子的结构或形态等信息的研究手段。X射线衍射分析法是研究物质的物相和晶体结构的主要方法。当某物质(晶体或非晶体)进行衍射分析时,该物质被X射线照射产生不同程度的衍射现象,物质组成、晶型、分子内成键方式、分子的构型、构象等决定该物质产生特有的衍射图谱。X射线衍射方法具有不损伤样品、无污染、快捷、测量精度高、能得到有关晶体完整性的大量信息等优点。因此,X射线衍射分析法作为材料结构和成分分析的一种现代科学方法,已逐步在各学科研究和生产中广泛应用。
从原子物理学的知识我们知道,对每一种化学元素的原子来说,都有其特定的能级结构,其核外电子都以各自特有的能量在各自的固定轨道上运行,内层电子在足够能量的X射线照射下脱离原子的束缚,成为自由电子,我们说原子被激发了,处于激发态,这时,其他的外层电子便会填补这一空位,也就是所谓跃迁,同时以发出X射线的形式放出能量。由于每一种元素的原子能级结构都是特定的,它被激发后跃迁时放出的X射线的能量也是特定的,称之为特征X射线。通过测定特征X射线的能量,便可以确定相应元素的存在,而特征X射线的强弱(或者说X射线光子的多少)则代表该元素的含量。
上一页
1
2
下一页
关注信标仪器
© 2021 浙江信标仪器有限公司 版权所有 浙ICP备18008269号-1 网站建设:中企动力 宁波